• Home
  • Tag: 上海419龙凤BN

377billionyearold fossils stake new claim to oldest evidence of life

first_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) “It’s a challenge in rocks that have been this messed up,” says Abigail Allwood, a geologist with NASA’s Jet Propulsion Laboratory in Pasadena, California, who was also not involved in the study. “There’s only so much you can do with them.”Nevertheless, researchers have searched through these most ancient rocks for structural or chemical relics that may have lingered. Last year, for example, scientists reported identifying odd reddish peaks in 3.7-billion-year-old rocks in Greenland that may be the product of stromatolites, though many doubted that interpretation. The best evidence for these fossilized algal mats comes from 3.4-billion-year-old rocks in Australia, generally thought of as the strongest evidence for early life on Earth.But some scientists think ocean life may have begun earlier—and deeper. In the modern ocean, life thrives in and around the vents that form near seafloor spreading ridges or subduction zones—places where Earth’s tectonic plates are pulling apart or grinding together. The vents spew seawater, superheated by magma in the ocean crust and laden with metal minerals such as iron sulfide. As the water cools, the metals settle out, forming towering spires and chimneys. The mysterious ecosystem that inhabits this sunless, harsh environment includes bacteria and giant tube worms that don’t derive energy from photosynthesis. Such hardy communities, scientists have suggested, may not only have thrived on early Earth, but may also be an analog for life on other planets.Now, a team led by geochemist Dominic Papineau of University College London and his Ph.D. student Matthew Dodd says it has found clear evidence of such ancient vent life. The clues come from ancient rocks in northern Quebec in Canada that are at least 3.77 billion years old and may be even older than 4 billion years. Dodd examined hair-thin slices of rock from this formation and found intriguing features: tiny tubes composed of an iron oxide called hematite, as well as filaments of hematite that branch out and sometimes terminate into large knobs.Filaments and tubes are common features in more recent fossils that are attributed to the activity of iron-oxidizing bacteria at seafloor hydrothermal vents. Papineau was initially skeptical. However, he says, “within a year [Dodd] had found so much compelling evidence that I was convinced.”The team also identified carbonate “rosettes,” tiny concentric rings that contain traces of life’s building blocks including carbon, calcium, and phosphorus; and tiny, round granules of graphite, a form of carbon. Such rosettes and granules had been observed previously in rocks of similar age, but whether they are biological in origin is hotly debated. The rosettes can form nonbiologically from a series of chemical reactions, but Papineau says the rosettes in the new study contain a calcium phosphate mineral called apatite, which strongly suggests the presence of microorganisms. The graphite granules may represent part of a complicated chemical chain reaction mediated by the bacteria, he says. Taken together, the structures and their chemistry point to a biological origin near a submarine hydrothermal vent, the team reports online today in Nature. That would make them among the oldest signs of life on Earth—and, depending on the actual age of the rocks, possibly the oldest.That doesn’t necessarily mean that life originated in deep waters rather than in shallow seas, Papineau says. “It’s not necessarily mutually exclusive—if we are ready to accept the fact that life diversified very early.” Both the iron-oxidizing bacteria and the photosynthetic cyanobacteria that build stromatolite mats could have evolved from an earlier ancestor, he says.But researchers like Konhauser remain skeptical of the paper’s conclusion. For example, he says, the observed hematite tubes and filaments are similar to structures associated with iron-oxidizing bacteria, “but of course that does not mean the [3.77-] billion-year-old structures are cells.” Moreover, he notes, if the tubes were formed by iron-oxidizing bacteria, they would need oxygen, in short supply at this early moment in Earth’s history. It implies that photosynthetic bacteria were already around to produce it. But it’s still unclear how oxygen would get down to the depths of early Earth’s ocean. The cyanobacteria that make stromatolites, on the other hand, make oxygen rather than consume it.The new paper makes “a more detailed case than has been presented previously,” Allwood says. Most previous reports of possible signs of life older than about 3.5 billion years have been questioned, she adds—not because life didn’t exist, but because it’s just so difficult to prove the further back in time you go in the rock record. “There’s still quite a bit of room for doubt.” Life on Earth may have originated in the sunless depths of the ocean rather than shallow seas. In a new study, scientists studying 3.77-billion-year-old rocks have found tubelike fossils similar to structures found at hydrothermal vents, which host thriving biological communities. That would make them more than 300 million years older than the most ancient signs of life on Earth—fossilized microbial mats called stromatolites that grew in shallow seas. Other scientists are skeptical about the new claims.“The authors offer a convincing set of observations that could signify life,” says Kurt Konhauser, a geomicrobiologist at the University of Alberta in Edmonton, Canada, who was not involved in the study. But “at present, I do not see a way in which we will definitively prove ancient life at 3.8 billion years ago.”When life first emerged on Earth has been an enduring and frustrating mystery. The planet is 4.55 billion years old, but thanks to plate tectonics and the constant recycling of Earth’s crust, only a handful of rock outcrops remain that are older than 3 billion years, including 3.7-billion-year-old formations in Greenland’s Isua Greenstone Belt. And these rocks tend to be twisted up and chemically altered by heat and pressure, making it devilishly difficult to detect unequivocal signs of life. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe 3.77-billion-year-old fossils stake new claim to oldest evidence of life Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img Email By Carolyn GramlingMar. 1, 2017 , 1:00 PM Matthew Dodd These tubelike structures, formed of an iron ore called hematite, may be microfossils of 3.77-billion-year-old life at ancient hydrothermal vents.last_img read more