• Home
  • Tag: 上海千花网MF

Artificial intelligence spots obesity from space

first_imgA. Maharana, E. Okanyene Nsoesie, JAMA Network Open, doi:10.1001/jamanetworkopen.2018.1535, (2018) Artificial intelligence spots obesity from space In the end, the researchers could estimate an area’s obesity rate even better than they could with separately available stats such as the number of gyms and restaurants, they report today in JAMA Network Open. Neighborhood features also correlated with per capita income, suggesting they may be useful for estimating obesity in part because wealth affects both one’s weight and where one lives.Assessing an area’s obesity rates may help city planners decide whom to encourage to be more physically active or where to make healthy food outlets more prevalent, the paper suggests. Satellite data cannot fully substitute for more traditional measures of public health such as surveys, but as a supplement it’s cheap and fast. Like a supersize meal. Email By Matthew HutsonAug. 31, 2018 , 11:10 AM Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Country Click to view the privacy policy. Required fields are indicated by an asterisk (*) Some public health problems are so large you can see them from space. Artificial intelligence can use satellite images to estimate a region’s level of obesity—even without spotting the overweight people, a new study reveals. Instead, it relies on cues such as the distribution of buildings and trees.Knowing a neighborhood’s rate of overweight adults can help target interventions such as healthy eating campaigns. But gathering such statistics tends to require expensive surveys or on-the-ground investigation.To find a better way, researchers downloaded nearly 150,000 Google Maps satellite images of 1695 census tracts (basically neighborhoods) in four cities: Los Angeles, California; Memphis, Tennessee; San Antonio, Texas; and the Seattle, Washington, area. Then they fed the images into a neural network, an algorithm that finds patterns in large amounts of data. The network helped the researchers focus on the most important features of the images, such as the amount of green area (the green blobs in the images above—in the middle and on the right—roughly corresponding to trees and grass in the images above on the left), gray strips (the gray blobs in the middle, corresponding to roads on the left), or white rectangles (the red blobs on the right, corresponding to buildings on the left). The team then used another program to find connections between these blobby visual features and obesity rates.last_img read more